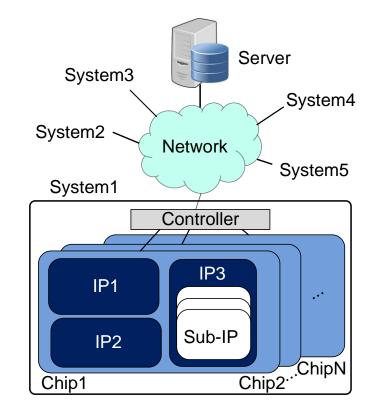
Mode-Based Obfuscation using Control-Flow Modifications

Sandhya Koteshwara, Chris H. Kim, Keshab K. Parhi


Outline

- Background and motivation
- Mode-based hardware obfuscation
- Basic concepts : Folding, Control-flow modifications
- Complete design : Obfuscated datapath and controlpath
- Mode mapping
- Analysis of obfuscated modes
- Simulation and synthesis results
- Conclusions and Future work

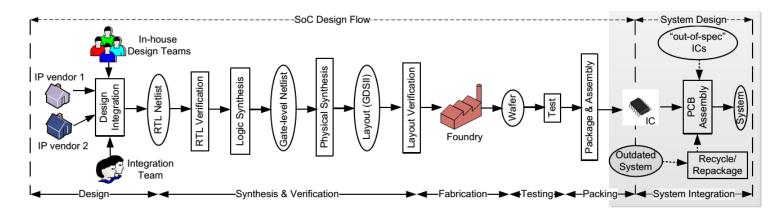
Background and Motivation

Background:

- Shifts of design challenges → reliability and security.
- Globalization of Integrated Circuits
 (ICs) and systems design and fabrication.
- Lost revenue and jobs due to counterfeit ICs.
- Hardware security is critical to national defense.

Background and Motivation

Key need:

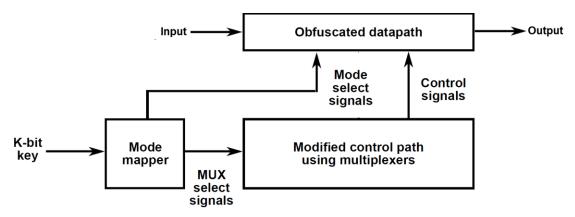

 Design of integrated circuits that can be authenticated and obfuscated for systems with deep, heterogeneous, and complex hierarchies

Application example:

 Recycled electronics products (accounting for 80 to 90 percent of counterfeit parts in circulation, according to a 2010 estimate by SMT Corp., based in Sandy Hook, Conn)*

^{*} J. Villasenor, and M. Tehranipoor. "Chop-shop Electronics." *IEEE SPECTRUM* 50.10 (2013): 41-45

Hardware obfuscation


- Vulnerable to threats such as IP piracy, IC overbuilding, reverse engineering, counterfeiting, Trojans, side channel attacks etc.
- Obfuscation involves hiding functionality of a design.

Reference : M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, "Hardware security: Threat models and metrics," in Proceedings of the International Conferenceon Computer-Aided Design, 2013, pp. 819–823

Goals of obfuscation

- Address obfuscation of Digital Signal Processing (DSP) circuits.
- Highly control-driven circuits and hence obscuring control-flow is required.
- Properties of these circuits such as number of taps of filter, length of FFT which dictate performance, area, power need to be hidden.
- No existing methods of obfuscation target these specific concerns.

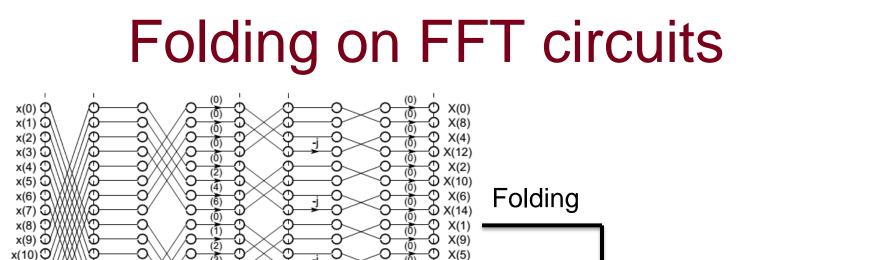
Mode-based obfuscation

- Design meaningful and non-meaningful modes by obfuscation of both data-path and control-path.
- Only a correct key applied to the system can make the circuit operate in a desired correct mode.

Reference: Y. Lao and K. K. Parhi, "Obfuscating DSP circuits via high-level transformations," IEEE Transactions on VLSI Systems, pp. 819–830, May 2015.

Basic concepts

• Folding:


High-level transformation on circuits to create time-multiplexed architectures.

• Control-flow modifications:

Components of the folded circuits require precise control for correct operation. Modifications to these control signals to compute incorrect outputs.

References:

K. K. Parhi, *VLSI digital signal processing systems: design and implementation.* John Wiley & Sons, 1999. K.K. Parhi, C.-Y. Wang, A.P. Brown, "<u>Synthesis of control circuits in folded pipelined DSP architectures</u>," *IEEE Journal of Solid-State Circuits*, Jan. 1992

X(13)

X(3)

X(11)

X(7)

X(15)

x(2k)

x(2k+1)

D

D

ς

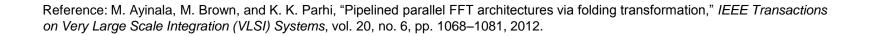
BF I

D

S

BF II

D


S

BF I

→ Y(k)

→Y(k+8)

BF II

BFII

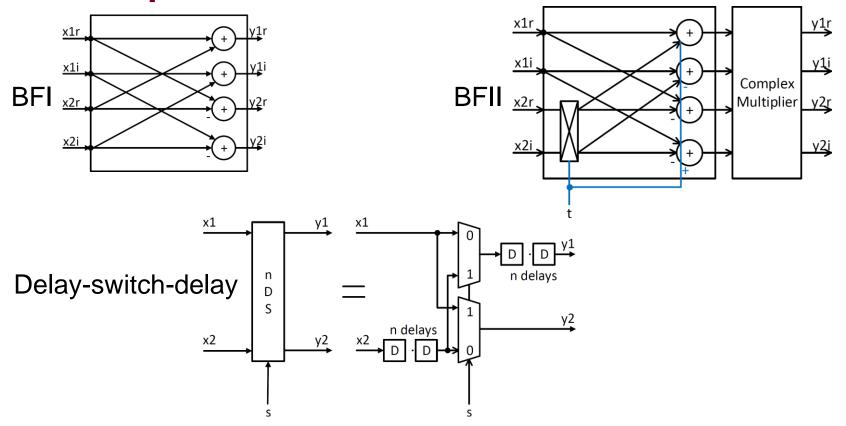
x(11) 🛈

x(12) 🔿

x(13) 🛈

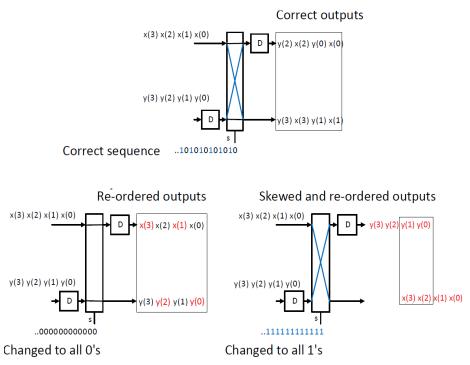
x(14) 🔿

x(15) 🛈


6

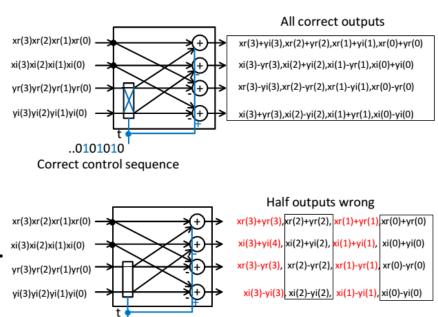
BFII

BFI


BFI

Components of a folded FFT

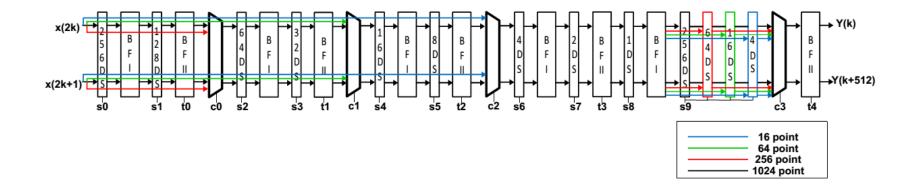
Control-Flow Modifications: Switches


- Any deviation from *correct Control sequence* leads to incorrect, randomized outputs.
- The correct control signals **s** for these structures depend on the number of associated delays and position with respect to complete datapath.

Control-Flow Modifications: Butterfly

..0000000 ' Changed to all 0's

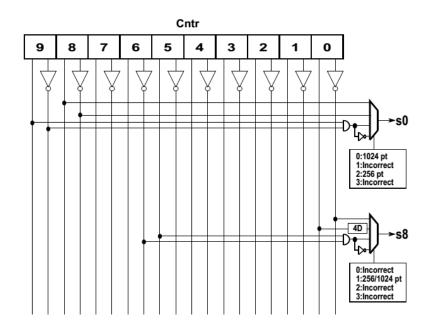
• The control input *t* here, dictates the multiplication of inputs by a –j factor.



• Modifications to this control input leads to controlled corruption of computed outputs.

Complete Design

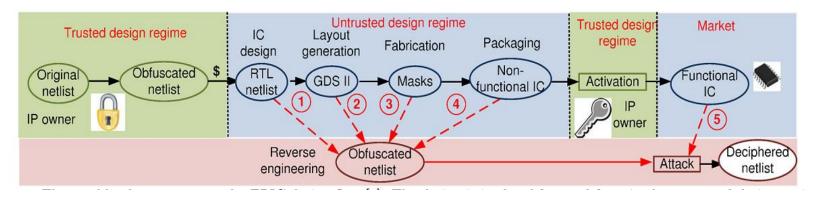
- An obfuscated 1024-point FFT is built as an example.
- The obfuscated datapath is built using folding transformation to produce a 16/64/256/1024-point reconfigurable design.
- The obfuscated controlpath is built using different combinations of correct and incorrect control sequences, selected using multiplexers.


Obfuscated Datapath

 Four different architectures are combined to generate one reconfigurable architecture using only a few additional switches and wires.

Obfuscated Controlpath

- The obfuscated datapath has
 15 different controls s0-s9 and t0-t4.
- Correct and incorrect control sequences for these are derived from a 10-bit counter.
- For example, s0 derived from cntr[8], !cntr[8], 0(cntr[9] & !cntr[9]), 1
- Multiplexers are used at the control outputs and select signals are generated using the *key*.


Mode Mapping

- Correct key maps to all correct control signal combinations.
- Incorrect key maps to modes which are non-meaningful or partially correct.
- For each non-meaningful mode, at least 50% deviation from correct control signal combination is used.
- Examples:
- Non-meaningful mode with correct control signals for s0, s2, s4, s6, s8, t0 and t2 and incorrect signals for the rest.
- 2. Partially correct mode with 25% correct outputs by choosing incorrect controls for t0 and t4.

Analysis of Obfuscated Modes

• Attack model :

Availability of obfuscated netlist from various sources and a functional IC from the market is assumed.

Reference : J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, "Security analysis of logic obfuscation," in Proceedings of the 49th Annual Design Automation Conference, 2012, pp. 83–89.

Analysis of Obfuscated Modes

Obscurity of control-flow :

- For *C* different control signals in the design, each is obfuscated to degree *L* using a *L*:1 mux. This gives us L^C different signal combinations.
- For example, in our implementation, L = 4, C = 15 (corresponding to s = 10 and t = 5 variables) giving 4¹⁵ different combinations.
- For each mode, M different incorrect signals can be used to create modes. M=0 implies a meaningful mode of operation. For sufficient randomness M>C/2 is used.

Analysis of Obfuscated Modes

• For each *M* value, we can modify the signal in *L* ways using the mux. This gives us a total of $\binom{C}{M}*L^{M}$ modes, for every chosen value of *M*.

Protection of length of FFT :

 System can operate in 4 different modes (16/64/256/1024 point FFT) and attacker has no way to know which is the desired.
 Partially correct modes confuse attacker.

Simulation and Synthesis Results

Design Compiler used with a 65nM technology library, clock speed 100MHz. All overhead comparisons done with respect an unobfuscated 1024-point FFT.

• First design uses different number of meaningful modes. 2 is a nominal value. (Mux size at controlpath=4, Key size=16)

No. of meaningful	Total area	Total power
modes	overhead	overhead
$1 \ (1024 \text{ point})$	0.2%	0.5%
$2 \ (256/1024 ext{ point})$	8.5%	10.6%
${3} \over (64/256/1024 { m \ point})$	38%	15.5%
$\frac{4}{(16/64/256/1024 \text{ point})}$	41.5%	17.3%

Table 1: Overhead due to meaningful modes

Simulation and Synthesis Results

- Next, the mux size at controlpath is varied. (Meaningful modes=2, Key size=16).
- This has direct correlation to security.

Mux size of	Controlpath overhead		Total overhead	
controlpath (L)	Area	Power	Area	Power
2	2%	0.7%	8.2%	10.1%
4	5.5%	1.7%	8.35%	10.5%
8	22%	4.2%	8.5%	11.4%
16	41%	6.7%	9.1%	12.1%

Table 2: Overhead due to size of mux at controlpath

Simulation and Synthesis Results

- Finally, the key size is increased using mode mapping. (Meaningful modes=2, Mux size=4)
- Once multiplexer size at control path is set, increase in overhead is not high.

	Total		
Key size (Modes)	Overhead		
	Area	Power	
4(16)	8.29%	10.53%	
8(256)	8.33%	10.55%	
16 (65536)	8.35%	10.59%	
20 (1048576)	8.42%	10.63%	
$28 \ (268435456)$	8.47%	10.66%	

Table 3: Overhead for different key sizes

Conclusion and Future Work

- Demonstration of mode-based method of obfuscation using FFT.
- Control-flow modifications to design modes of operation of circuit.
- Analysis of the various modes and their role in security.
- Low overheads (8% area overhead and 10% power overhead) can be achieved.
- Formal derivation of metrics of obfuscation and automation of the obfuscation technique are future areas to be explored.

Thank you!

©2014 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.