Efficient Algorithms and
Architectures for Double Point
Multiplication on Elliptic Curves

Reza Azarderakhsh: rxaeec@rit.edu

and Koray Karabina: kkarabina@fau.edu



mailto:rxaeec@rit.edu
mailto:Kkarabina@fau.edu
mailto:Kkarabina@fau.edu

Double Point Multiplication

e Has applications for
— Signature verification
— Post-quantum cryptography
— Efficient single point multiplication

* There are only few laddering algorithms for the
computation of double point multiplication.

— They have never been investigated for hardware
implementations.



Binary Elliptic Curves

f (o) is a monic irreducible polynomial over F,[o]
F,n = F,[0]/{(f(0)) is a finite field with 2™ elements
Eqp(Fon) = {(x,y): y*+xy =x>+ax*+ b,x,y € Fyn} U o
E.p(F,n ,+) is an abelian group

|Eqp(Fon)| =27+ 1 +¢, |t] < 2vV27

kP =P+ P + .-+ P, the sum of k points

P+owo=P,P+(—P)=o00. P=(x,y) > —-P=(x,x +y)



Scalar Point Multiplication

* Let (P) be a prime order subgroup of E (IF,n)

e Diffie-Hellman key exchange:

Single point multiplication (SPM):

— E, P: public, k: secret random, Compute: kP

* Cramer-Shoup encryption, key generation:

Double point multiplication (DPM):

— E, P, Q: public, a, b: secret random, Compute: aP + b(Q



Efficiency and Security

|deal scenario:

e Efficient algorithms that perform DPM and SPM so
that protocols are faster

e Suitable curves so that DPM can be used to further
speed up SPM:
— Choose a curve and A so that P —» AP is super efficient

— Write k = k{ + k,A for much smaller k;
— Compute kP = (k; + k,A)P = kP + k,(AP)
* Methods to perform SPM via DPM:
1. Straus-Shamir trick and interleaving techniques
2. Differential addition chains



Efficiency and Security (2)

Recipe:
* Choose your curve and parameters so that
— Discrete Logarithm Problem is intractable: P, kP — k

* Choose your algorithms so that
— The leakage of side channel information is minimum

Bad News: The most efficient variants of DPM algorithms
(Straus-Shamir, interleaving, differential addition chain)
are not side-channel friendly

Good News: There are secure variants of DPM algorithms




Double Point Multiplication Laddering Algorithms

 We investigate three main laddering algorithms
suitable for hardware implementations.

: Cost Differential :
Algorithm per-bit Regular addition chain Parallelizable
JT [14] 0.5A+1D Yes No No
DIB [6] 2A+ 1D Yes Yes Yes
AK [3] 1.44 +1.4D Yes Yes Yes

Details in the next slides.




Joye and Tunstall (JT) Algorithm

JT, 2009 proposes a regular recoding of
scalars

One of their method is to use a signed-digit
recoding method with the digit set

If are -bit integers, then requires
1. About iterations

2. The current state is updated to, where
3. Per-bit cost is

Toy example:

a

-3

3

b

3

1

Point

P+0Q

5P + 5Q

17P + 23Q

71P + 930




Parallel Computation of PA and PD for JT

13M +4S +9A 5M +4S + 5A
(cljc?it;cc)ies] Point Addition Latency Point Doubling

(clock cycles)

st ll

S4:

55:

S6:

S7:

S8:

S9:

S10:

S11:

We use Explicit point addition and doubling formulae ’



D. J. Bernstein (DJB) Algorithm

* DJB has a uniform structure

DJB, 2006 proposes a new binary chain

e Explicit description is provided in our paper
* Per-bit costis 24 + 1D
Example: a = 71,b = 93

k CS DS Vi+1(1) Vi+1(2) Vi+1(3)
0 P+Q 2P + 2Q P+ 2Q
1 | @D [(=1,-1),00,-1)| 3P+30 2P + 20 2P +3Q
2 || @, @0 5P + 50 4P + 6Q 5P + 60
3 122 | (1,-1,(-1,0 9P +11Q 8P + 12Q 9P +12Q
4 (31 | (1,-1D),(0,—-1) 17P + 23Q 18P + 24Q 18P + 23Q
5 1(32) | (-1,-1),(0,1) 35P +47Q 36P + 46Q 36P +47Q
6 | (31D | (—-1,1),(—-1,0 71P +93Q 72P 4+ 94Q 71P +94Q




Parallel Computation of PA & PD for DJB

Latency
(clock cycles)
1 S R e e I e |
51: M+1
S2: 1 ___________________
S3: 1 _________________________________________
S4: M+1 :
85: 1 _________________
S6: 1 : -----

@ Double-squaring

Two PA unit are employed in parallel

We use mixed differential point addition and doubling formulae based on Lopez-Dahab
with the cost of:

6M + 55 + 3A

11



Azarderakhsh and Karabina (A
AK, 2014: based on differential adc

AK has a uniform structure

) Algorithm

ition chains

Explicit description is provided in our paper
Per-bit costis 1.44 + 1.4D
Example: a = 71,b = 93

d e u v A R, R, R
71 193 | (1,0) | (O,1) |(1,—-1) P Q P—-Q
71 |11 | (1,1) | (0,2) | (1,-1) P+Q 2Q P—-0Q
30 | 11 | (22) | (1,3) |(1,—-D) 2P +20Q P+3Q P—-Q
15 |11 | (44) | (13) | (3D 4P + 4Q P+ 3Q 3P+ Q
2 |11 | 88) | (B7 | 31 8P + 8Q 5P +7Q 3P+Q
1 |11 {(16,16) | (5,7) | (11,9) | 16P +16Q SP+7Q 11P +9Q
1 (21,23) ((10,14)| (11,9 21P +23Q | 10P +14Q | 11P +9Q
1 2 [(31,37) |(20,28)| (11,9) | 31P+37Q |20P +28Q | 11P +9Q
1 1 |[(31,37) [(40,56)|(—9,19) | 31P+37Q | 40P +56Q |-9P +19Q

Result =R, + R, = 71P + 93Q




Parallel Computation of PA & PD for AK

LoadlTLIL Y

Step D:(cloick cycles) X, :
sor 1 7] B8 W ®WETET

Step 2: M+l

Step4: 1

Step5: 1

Step 6: M+1

Step 7:

=

1
%B Addition @ Squaring @ Multiplication

Step 8:

Cost: 6M +5S + 1D + 4A

We use Projective differential point addition and doubling based on the equation
proposed by Stam.

13



Implementation Results on FPGA

Naive Method 6 Mults. (Section 2.1)
d | q Latency CPD | Time _-"!‘LI'F:'H, AT .
|# Clock cycles| | |ns] lus| | |#F Slices| | Area x Time
7| 34 17,937 3.40 60.9 6,218 0.38
13 | 18 10,305 3.93 40.4 9,693 0.39
18113 7,920 3.97 31.4 11,335 0.35
26 1] 9 6012 4.31 25.9 16,612 0.43
JT 4 Mults. (Section 2.2) [12]
7| 34 40,057 3.42 | 136.9 4,196 0.57
13 | 18 23,145 3.98 92.1 6,541 0.60
18113 17,860 4.01 71.6 7,649 0.54
26 1] 9 13,632 4.33 59.1 11,210 0.66
DJB 5 Mults. (Section 2.3) [5]
Latency CPD | Time Area AT
# Clock cycles] S| S| # Slices| | Area x Time
17,828 3.38 60.2 5,207 0.31
10,244 3.90 39.9 8,117 0.32
7,874 3.91 30.7 9,492 0.29
5,978 4.29 25.7 13,911 0.35
AK 4 Mults. (Section 2.4) [3]
25,437 3.38 85.9 4,146 0.35
14,884 3.88 5T.7T 6,462 0.37
11,586 3.97 45.9 7,667 0.34
8,947 4.28 38.2 11,075 0.42




A xT: Area-time Product

Area-Time Comparison

Comparison of implementation results of different double point multiplication
algorithms on FPGA

0.7

T e

085 e e e R V... Nawe
: : : : : : —+— B-NBC
77777777 JT
03 e akDAC

0.45

P.M. Time [us]

0.4

E
0.35¢
0.3]
0.25 \ | \ i i \ | \ 20 I 1 1 1 1 1
8 10 12 14 16 18 20 22 24 26 04 0.6 0.8 1 1.2 1.4 1.6 1.8
d: Digit-size Area: Number of Occupied Slices x 10°

15



Conclusion

Double point multiplication has several applications.

Efficient algorithms and architectures for double point
multiplication are proposed.

AK requires smaller area
DJB provides the fastest computations

Future work: Implementations on resource constrained
environments



