Efficient Algorithms and Architectures for Double Point Multiplication on Elliptic Curves

Reza Azarderakhsh: <u>rxaeec@rit.edu</u> and Koray Karabina: <u>kkarabina@fau.edu</u>

Double Point Multiplication

- Has applications for
 - Signature verification
 - Post-quantum cryptography
 - Efficient single point multiplication
- There are only few laddering algorithms for the computation of double point multiplication.
 - They have never been investigated for hardware implementations.

Binary Elliptic Curves

- $f(\sigma)$ is a monic irreducible polynomial over $\mathbb{F}_2[\sigma]$
- $\mathbb{F}_{2^n} = \mathbb{F}_2[\sigma]/\langle f(\sigma) \rangle$ is a finite field with 2^n elements
- $E_{a,b}(\mathbb{F}_{2^n}) = \{(x,y): y^2 + xy = x^3 + ax^2 + b, x, y \in \mathbb{F}_{2^n}\} \cup \infty$
- $E_{a,b}(\mathbb{F}_{2^n}, +)$ is an abelian group
- $|E_{a,b}(\mathbb{F}_{2^n})| = 2^n + 1 + t, |t| \le 2\sqrt{2^n}$
- $kP = P + P + \dots + P$, the sum of k points
- $P + \infty = P$, $P + (-P) = \infty$. $P = (x, y) \Rightarrow -P = (x, x + y)$

Scalar Point Multiplication

- Let $\langle P \rangle$ be a prime order subgroup of $E(\mathbb{F}_{2^n})$
- Diffie-Hellman key exchange:

<u>Single point multiplication (SPM)</u>:

- *E*, *P*: public, *k*: secret random, Compute: *kP*
- Cramer-Shoup encryption, key generation:

Double point multiplication (DPM):

-E, P, Q: public, a, b: secret random, Compute: aP + bQ

Efficiency and Security

Ideal scenario:

- Efficient algorithms that perform DPM and SPM so that protocols are faster
- Suitable curves so that DPM can be used to further speed up SPM:
 - Choose a curve and λ so that P $\rightarrow \lambda P$ is super efficient
 - Write $k = k_1 + k_2 \lambda$ for much smaller k_i
 - Compute $kP = (k_1 + k_2\lambda)P = k_1P + k_2(\lambda P)$
- Methods to perform SPM via DPM:
 - 1. Straus-Shamir trick and interleaving techniques
 - 2. Differential addition chains

Efficiency and Security (2)

Recipe:

- Choose your curve and parameters so that
 - Discrete Logarithm Problem is intractable: $P, kP \rightarrow k$
- Choose your algorithms so that
 - The leakage of side channel information is minimum

<u>Bad News</u>: The most efficient variants of DPM algorithms (Straus-Shamir, interleaving, differential addition chain) are not side-channel friendly

Good News: There are secure variants of DPM algorithms

Double Point Multiplication Laddering Algorithms

• We investigate three main laddering algorithms suitable for hardware implementations.

Algorithm	Cost per-bit	Regular	Differential addition chain	Parallelizable
JT [14]	0.5A + 1D	Yes	No	No
DJB [6]	2A + 1D	Yes	Yes	Yes
AK [3]	1.4A + 1.4D	Yes	Yes	Yes

Details in the next slides.

Joye and Tunstall (JT) Algorithm

- JT, 2009 proposes a *regular* recoding of scalars
- One of their method is to use a signed-digit recoding method with the digit set
- If are -bit integers, then requires
 - 1. About iterations
 - 2. The current state is updated to , where
 - 3. Per-bit cost is
- Toy example:

a	1	1	-3	3
b	1	1	3	1
Point	P + Q	5P + 5Q	17P + 23Q	71P + 93Q

8

Parallel Computation of PA and PD for JT

13M + 4S + 9A

5M + 4S + 5A

We use Explicit point addition and doubling formulae

D. J. Bernstein (DJB) Algorithm

- DJB, 2006 proposes a new binary chain
- DJB has a *uniform* structure
- Explicit description is provided in our paper
- Per-bit cost is 2A + 1D

Example: a = 71, b = 93

k	CS	DS	$v_{k+1}(1)$	$v_{k+1}(2)$	$v_{k+1}(3)$
0			P + Q	2P + 2Q	P + 2Q
1	(1,1)	(-1,-1), (0,-1)	3P + 3Q	2P + 2Q	2P + 3Q
2	(3,1)	(1,1), (1,0)	5P + 5Q	4P + 6Q	5P + 6Q
3	(2,2)	(1,-1), (-1,0)	9P + 11Q	8P + 12Q	9P + 12Q
4	(3,1)	(1,-1), (0,-1)	17P + 23Q	18P + 24Q	18P + 23Q
5	(3,2)	(-1,-1),(0,1)	35P + 47Q	36P + 46Q	36P + 47Q
6	(3,1)	(-1,1), (-1,0)	71P + 93Q	72P + 94Q	71P + 94Q

Parallel Computation of PA & PD for DJB

Two PA unit are employed in parallel

We use mixed differential point addition and doubling formulae based on Lopez-Dahab with the cost of:

$$6M + 5S + 3A$$

Azarderakhsh and Karabina (AK) Algorithm

- AK, 2014: based on differential addition chains
- AK has a *uniform* structure
- Explicit description is provided in our paper
- Per-bit cost is 1.4A + 1.4D

Example: a = 71, b = 93

d	е	u	v	Δ	R _u	R_v	R_{Δ}
71	93	(1,0)	(0,1)	(1, -1)	Р	Q	P-Q
71	11	(1,1)	(0,2)	(1,-1)	P + Q	2 <i>Q</i>	P-Q
30	11	(2,2)	(1,3)	(1, -1)	2P + 2Q	P + 3Q	P-Q
15	11	(4,4)	(1,3)	(3,1)	4P + 4Q	P + 3Q	3P + Q
2	11	(8,8)	(5,7)	(3,1)	8P + 8Q	5P + 7Q	3P + Q
1	11	(16,16)	(5,7)	(11,9)	16P + 16Q	5P + 7Q	11P + 9Q
1	5	(21,23)	(10,14)	(11,9)	21P + 23Q	10P + 14Q	11P + 9Q
1	2	(31,37)	(20,28)	(11,9)	31P + 37Q	20P + 28Q	11P + 9Q
1	1	(31,37)	(40,56)	(-9,19)	31P + 37Q	40P + 56Q	-9P + 19Q
$Posult - R \perp R - 71P \perp 930$							

Parallel Computation of PA & PD for AK

Cost: 6M + 5S + 1D + 4A

We use **Projective** differential point addition and doubling based on the equation proposed by Stam.

Implementation Results on FPGA

Naive Method 6 Mults. (Section 2.1)							
d a	a	Latency	CPD	Time	Area	AT	
u	Ч	[# Clock cycles]	[ns]	μs	[# Slices]	Area \times Time	
7	34	17,937	3.40	60.9	6,218	0.38	
13	18	10,305	3.93	40.4	9,693	0.39	
18	13	7,920	3.97	31.4	11,335	0.35	
26	9	6012	4.31	25.9	16,612	0.43	
	JT 4 Mults. (Section 2.2) [12]						
7	34	40,057	3.42	136.9	4,196	0.57	
13	18	$23,\!145$	3.98	92.1	6,541	0.60	
18	13	17,860	4.01	71.6	7,649	0.54	
26	9	13,632	4.33	59.1	11,210	0.66	

DJB 5 Mults. (Section 2.3) [5]						
Latency	CPD	Time	Area	AT		
[# Clock cycles]	[ns]	$[\mu s]$	[# Slices]	Area \times Time		
17,828	3.38	60.2	5,207	0.31		
10,244	3.90	39.9	8,117	0.32		
7,874	3.91	30.7	9,492	0.29		
5,978	4.29	25.7	13,911	0.35		
AK 4 Mults. (Section 2.4) [3]						
25,437	3.38	85.9	4,146	0.35		
14,884	3.88	57.7	6,462	0.37		
11,586	3.97	45.9	7,557	0.34		
8,947	4.28	38.2	$11,\!075$	0.42		

Area-Time Comparison

Comparison of implementation results of different double point multiplication algorithms on FPGA

Conclusion

- Double point multiplication has several applications.
- Efficient algorithms and architectures for double point multiplication are proposed.
- AK requires smaller area
- DJB provides the **fastest computations**
- Future work: Implementations on resource constrained environments