PRACTICAL ASPECTS OF QUANTIZATION AND TAMPER-SENSITIVITY FOR POKS 2016-01-20

Vincent Immler, Maxim Hennig, Ludwig Kürzinger, Georg Sigl

AGENDA

Introduction

Related Work

- Quantization for POKs
- Case Study
- Conclusion

Introduction

- Physical Unclonable Functions (PUFs) based on manufacturing variations
- Variations must be hard to predict and easy to evaluate
- Applications of PUFs in general:
 - Key storage
 - PUFs not being tamper-evident, e.g. SRAM-PUF
 - **PUFs** being tamper-evident, e.g. Coating-PUF \leftarrow focus of this work
 - Challenge-Response authentication
- Tamper-evident PUFs often named "Physically Obfuscated Key" (POK)
- Physical attacks (tampering)
 - Drilling, cutting, removal \rightarrow likely to change POK ("tamper-evident")
 - Probing attempts → improbable to read POK ("read-proof")

Introduction

- Certain standards (e.g. FIPS 140-2 Level 4) mandate protection mechanisms to achieve physical security of a certified device
 - Board-level protection, i.e., PCB and its components
 - IC-level protection, i.e., integrated circuit and its package
- Standards require tamper-detection and response mechanism
 - Attacks shall be detected by protected device
 - Response shall protect sensitive data, e.g., by means of zeroization
- POKs as ideal candidate for protected key storage
 - POK as "Key-Encryption-Key" → other keys of the system and its main software depend on derived key of the POK ("tamper-proof" data)
 - Physical attack destroys $POK \rightarrow encrypted$ data cannot be recovered

Introduction

- Using a POK requires a process to generate a key
 - Measurement of variation (e.g., analog-to-digital conversion via ADC)
 - Quantization-scheme of raw measurement data ← focus of this work
 - Additional post-processing
- From a cryptographic point of view, the generated key shall be
 - Unique for each device and uniformly distributed
 - Reliable such that each generation attempt yields the same key
 - Quantization can be optimized towards
 - Key quality (uniqueness, equi-probability of bits)
 - Reliability (likelihood of obtaining the same key each time)
 - Tamper-sensitivity (sensitivity towards attacks) ← *important!*

Tamper-Sensitivity?

Example: POK consists of multiple capacitances, each is composed of:

- Nominal capacitance: C^N
- Variation due to manufacturing: C^V (relevant for POK values)
- What is the smallest shift (caused by an attack) for a single capacitance that goes undetected?
 - Different compared to noise / can it be distinguished from noise?
 - Magnitude of detectable shift depends on resolution of measurement circuit, present noise, and post-processing (i.e., quantization, and ECC)

RELATED WORK

What We Do

- Prior work: Devices protected with printed mesh on a flexible substrate
 - Mesh is continuously monitored to detect penetration attempts
 - Monitoring initialized at factory-site and *battery-backed* (active throughout lifetime of device)
- Our work: Use flexible substrate with electrodes as a POK
 - Does not require battery
 - Key generation to decrypt software of the device / determine integrity
 - Attack=physical destruction of key

Related Work

- Key generation for PUFs/POKs typically divided in two stages:
 - Key enrollment: key is derived for the first time, helper data is generated to support later key reconstruction
 - Key reconstruction: subsequent use of system results in noisy values which can be stabilized using the helper data
- Helper data may cause information leakage, i.e., leaks information about the actual key being derived. Leakage shall be negligible!
- Related work primarily considers the binary output of PUFs, e.g. SRAM
 - Corresponding helper data related to Error-Correcting Code (ECC)
 - Many schemes available to choose from
 - Good results for key quality and reliability
 - Due to type of considered PUFs: no tamper-sensitivity

Related Work

Alternatives needed for the noisy m-bit (integer value) output of a POK

- Pre-processing techniques to transform data (e.g., DCT)
- Quantization
- Coating PUF (CHES 2006, Tuyls et. al.)
 - Random dielectric particles cover top of IC
 - Capacitive sensors measure capacitance
 - Key generation:
 - Measurement of capacitance
 - Equi-probable quantization of data
 - Additional Error-Correcting Code (ECC)

QUANTIZATION FOR POKS

Quantization for POKs

Analysis based on comparison of two different quantization strategies

- Equi-distant quantization yields intervals with same width (Q1)
- Equi-probable quantization yields equi-probable bits (Q2)
- Post-processing steps vary accordingly

Equi-Distant Quantization

Enrollment: Divide range of values in evenly spaced intervals

- Measure POK-values multiple times and average to "remove" noise
- Determine interval width and compute offset to middle of interval
- Reconstruction:
 - Measure POK-value once, apply offset and quantization

Equi-Distant Quantization

Reliability:

- Based on confidence interval $CI = [-z\sigma_N, z\sigma_N]$
- Noise level must be determined (depends on device/application)
- Key quality:
 - Shannon entropy H(F) depends on PDF and number of intervals L
 - Higher number of L causes H(F) to approach the differential entropy
 - Resulting bits of quantization *not* equi-probable (requires hash)
- Considering possible attacks
 - I(F,W*): No information can be extracted
 - Tamper-sensitivity: Maximum shift for each interval is the same
- Limitations of this approach: Difficult to apply ECC

Equi-Probable Quantization

Enrollment: Divide range of values in equi-probable intervals

- Measure POK-values multiple times and average to "remove" noise
- Determine interval width and compute offset to middle of interval
- Reconstruction:
 - Measure POK-value once, apply offset and do quantization

Equi-Probable Quantization

Reliability:

- Based on confidence interval of smallest interval
- Noise level must be determined (depends on device/application)
- Key quality:
 - Shannon entropy H(F) solely depends on number of intervals L
 - Resulting bits are already equi-probable
- Considering possible attacks
 - see next slides
- Limitations
 - see next slides

Equi-Probable Quantization: Weakness #1

Observation:

- Smallest interval: Q_min
- Largest interval: Q_max
- Offset W* can exceed Q_min/2
- \rightarrow I(F,W^{*}) leaks information about F
- → depending on value of W*, helper data of quantization may fully determine quantized value of F
- even worse: for outermost interval, this value has highest probability to occur due to underlying PDF

Equi-Probable Quantization: Weakness #2

- Outermost intervals are less tamper-sensitive than innermost intervals
- Option 1: Valid range is limited by measurement range (bad)
- Option 2: Valid range is limited by boundary "guard" (better)

Can these Weaknesses be Mitigated?

- Weakness: information leakage
 - One could limit range of W* to 0.5*Q_min
 - Leakage is reduced but W* is still biased
 - At the same time: maximum shift attacker can do increases
- Weakness: tamper-sensitivity
 - Outermost interval can be made smaller with guard / increases rejects
 - Still, outermost intervals will be less sensitive to attacks

Considered Parameters for the Key Generation

- Key mismatch probability, should be less than 10⁽⁻⁶⁾
- I(F,W*) should be negligible
- Shannon entropy H(F)
- Worst-case shift by attacker not being detected (tamper-sensitivity)
- n bit (total number of bits extracted)
- k bit (key bits after all processing steps)

Analysis Results: Quantization Profiles (P1,P2,P3,P4)

 \mathbf{P}_1, Q_2 : Same approach as for the coating PUF in [10].

 \mathbf{P}_2, Q_2 : Modifed approach of [10] to limit Q_{max} .

 \mathbf{P}_3, Q_2 : The leakage of the helper data W^* is reduced.

 \mathbf{P}_4, Q_1 : The proposed equi-distant quantization.

Parameter	\mathbf{P}_1	\mathbf{P}_2	\mathbf{P}_3	\mathbf{P}_4
Quantizer	Q_2	Q_2	Q_2	Q_1
$P_k \lesssim 10^{-6}$	yes	yes	yes	yes
$I(F, W^{\star})$	leakage	leakage	reduced	negligible
H(F) in bit	3	3	3	~ 2.9
$Q_{\min}\left[2\sigma_N\right]$	2.9	2.9	2.9	5.3
$Q_{\max}\left[2\sigma_N\right]$	inf	17.5	17.5	5.3
$W_{\rm worst}^A \left[\sigma_N \right]$	inf	17.5	29.2	5.3
n bits	90	90	90	120
k bits ^a	66.4	66.4	66.4	60
t bits b	4	4	4	_

^aFor Q_2 , k is based on an optimal error correcting code [10], e.g., a code with parameters [n, k, 2t + 1]. For Q_1 , k is half the size of n due to requirements stated in NIST 800-90b. ^bt bits an error correcting code corrects. Considered as negative impact on tamper-sensitivity.

Implications

- Equi-probable quantization offers best worst-case sensitivity among all considered variants
- Equi-probable quantization should only be used if information leakage is reduced and boundary guard is used (P3)
- Side note: By using ECC one additionally corrects t bit

Parameter	\mathbf{P}_1	\mathbf{P}_2	\mathbf{P}_3	\mathbf{P}_4
Quantizer	Q_2	Q_2	Q_2	Q_1
$P_k \lesssim 10^{-6}$	yes	yes	yes	yes
$I(F, W^{\star})$	leakage	leakage	reduced	negligible
H(F) in bit	3	3	3	~ 2.9
$Q_{\min}\left[2\sigma_N\right]$	2.9	2.9	2.9	5.3
$Q_{\rm max}\left[2\sigma_N\right]$	inf	17.5	17.5	5.3
$W_{\text{worst}}^A \left[\sigma_N \right]$	inf	17.5	29.2	5.3
n bits	90	90	90	120
k bits ^a	66.4	66.4	66.4	60
t bits b	4	4	4	_

^aFor Q_2 , k is based on an optimal error correcting code [10], e.g., a code with parameters [n, k, 2t + 1]. For Q_1 , k is half the size of n due to requirements stated in NIST 800-90b. ^bt bits an error correcting code corrects. Considered as negative impact on tamper-sensitivity.

Conclusion

- Quantization is an important security aspect for POKs
- Any helper data should be considered for design (W and W*)
- Tamper-sensitivity related to reliability...
 - ... but should be considered a metric on its own
 - ... not necessarily the same as influence by noise
- At stage of quantization:
 - Achieving equi-probability of bits difficult without major drawbacks
 - Additional processing required

Thank you very much for your attention! Questions?

