Glasgow Caledonian
University

Tag-Protector: An Effective and
Dynamic Detection of
Out-of-bound Memory Accesses

Ahmed Saeed, Ali Ahmadinia Mike Just
School of Engineering and Built Environment School of Mathematics and
Glasgow Caledonian University, United Kingdom Computer Sciences,

Heriot-watt University, United Kingdom

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 1
Glasgow Caledonian University

Glasgow Caledonian

Outline

Introduction
Problem Statement
Proposed solution
Methodology
Implementation

Results and Discussion

v Vv VvV VY V VY V

Conclusion

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 2
Glasgow Caledonian University

Glasgow Caledonian

Introduction

> lllegal memory accesses (IMAs) are major concerns in
applications written with programming languages like C/C++.

* Typical programming errors: out-of-bound array indexing and
dangling pointer dereferences

= Spatial IMA :more commonly known as buffer overflow

= Temporal IMA: also known as use-after-free access

:int funcall(int argc , char #**argv){

: char *buffer ,*ptr,buffer2[MAX_size];//stack alloc
ptr=(char *)malloc(Max_size);//heap alloc

if (ptr==NULL) exit(1);

buffer=ptr;

strcpy (buffer ,argv[1]); /*possible heap overflowx/
strcpy (buffer2 ,argv[2]); /*possible stack ovrflowx/
free(buffer);

: memcpy(ptr,buffer2,Max_size) /*use-after-free */

0: printf("String one : %s\n,buffer") /*use-after-free */
1: printf("String two : Ys\n,buffer2")} /*use-after-free */

il e = I s R s 5 . T S % T e]

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 3
Glasgow Caledonian University

Glasgow Caledonian

Problem Statement

» Increase in software content and network connectivity.

» Software is not fully trustable.

= Software-based attacks: Stack smashing through buffer overflows

» |llegal memory reads and writes
» Protect System/Data / Programs against
= Extraction of secret information: Data confidentiality

= Modification in the behavior: Data integrity

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 4
Glasgow Caledonian University

@j
Glasgow Caledonian

Proposed Solution

» Detect IMAs dynamically through tag based protection

» Based on source code instrumentation through LLVM

compiler framework
» Targets data confidentiality and integrity attacks.

» Effectiveness evaluated through various benchmark

suites and testbed codes

= Presented lower memory and performance overhead

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 5
Glasgow Caledonian University

Glasgow Caledonian

Methodology

» Require application source code
» Implementation is based on following steps.

= Convert code In to Intermediate Representation(IR)
* Detect memory allocations instructions

* Link each memory objects with a special tag

» Detect memory access instructions.

* |[nsert tag address and value check instructions

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing
Glasgow Caledonian University

Methodology

-

Global allocations
; -

Figure 1:

Command-line
arguments

Stack- static
allocations

allocations

uninitialized data—

(bss segment)

Initialized data
[data segment)

Program code

(text seg)

(a)

GCU

Glasgow Caledonian
University

)

tag_start mark

—_——— — —— e —— e e e —

T,

tag_end mark

(<)

(a) Typical memory layout of a C program. (b)

Memory objects coupled with tag start and tag _end marks.
(c) Record table layout used by tag-protection at the time

of code instrumentation.

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing
Glasgow Caledonian University

@J
Glasgow Caledonian

Implementation

(file he file Tag-protection

— cIang pass

Ctile e file (LLVM-IR Code)

—{ lang —L . hefile
‘ lvm | -bcfile axa

. ——>{ llvm-opt —— clang (=

: linker

Cfile befil T

— clang

Figure 2: Tag-Protection implementation block diagram

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 8
Glasgow Caledonian University

GCU

Glasgow Caledonian

Implementation

Algorithm 1: Stage-5:Tag checks placement.

Input: Instrumented LLVM-TR code F_4 generated in
stage-4 of tag-protection solution ; memory
map table Tag_map_table;Dedicated tag
address globaltag

Output: Final Instrumented LLVN-TR code -y

generated through LLVM opt command using
stage-5 of tag-protection solution

for each function definition fun_def in 33 do

for each instruction fun_inst in fun_def do
if fun_inst is function call without definition
and not a memory allocation or deallocation call
then
for each function argument fun_arg in
Sfun_inst do
Create two memory objects be fore_fun
and after_fun. Retrieve respective
tag_start and tag_end marks from
Tag_map_table.
Read address location next to tag_end
address before and after fun_inst
instruction and store the values in
be fore_fun and after_fun respectively.
Place tag check instruction after function
call fun_inst comparing be fore_fun and
after_fun memory objects.
end
end
if fun_inst 1s a STORE/LOAD instruction
then
Retrieve respective tag_start and tag_end
marks from Tag_map _table and get address
to be accessed address_tobe_accessed by the
Sfun_inst instruction.
Perform address comparison checks:
address_tobe_accessed with the tag _start
and tag_end.
end
end

end

Delete memory map table Tag_map_table.

Save modified LLVM-IR code as an final instrumented
LLVM-TR code ~y

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 9
Glasgow Caledonian University

Results and Discussion

Glasgow Caledonian
University

Table 1: Effectiveness of the proposed tag-protection so-
lution on different applications from BugBench benchmark

suite
Application Bug location Bug type | Detected
be-1.06 storage.c:177 heap Ves
bec-1.06 util.c:577 heap Ves
bec-1.06 be.c:1425 global Ves
oczip-1.2.4 gzip.c:457 global yes
man-1.5h1 man.c:978 global yes
ncompress compress.c:896 stack Ves
polymorph-0.40 | polymorph.c:120 | global yes
polymorph-0.40 | polymorph.c:193 | stack yes
squid-2.3 ftp.c:1024 heap yes

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing
Glasgow Caledonian University

10

Glasgow Caledonian

Results and Discussion

1024 - H Taz-Protection
2 [Adcdress Samitizer
E O SAFECode 3%
E 256 - 223 ElSoftBound :
: i
== EE
- =] e =
= — — 32
E — —
o 16 - = —
= — — 5
% — Bl | == -
= el = — —
] 413 — — =
g F = = : [F =
. || = : |
i ':Q_'tl' Lp'l:' o 'L..:""" .-.{_I'-, 11"'!. 5
& o a0 o T

Figure 3: Performance overhead comparison for MiBench
Benchmark applications with existing solutions

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 11
Glasgow Caledonian University

Results and Discussion

Table 2: Increase in memory utilization for instrumented
MiBench Benchmark applications

Glasgow Caledonian

University

Applicat; Non-instrume- | Instrumen- | Increase
AppHeEation | nted (KB) ted(KB) (KB)

basicmath T308 T352 44
bitcount 7308 T352 44
qgsort 10056 10055 2
s1usan TE44 =556 712
dijkstra 7396 7404 8
patricia 14088 14104 16
sha 7356 T372 16
adpcm 7304 7348 44
FEFT TT72 TEE0 108
gsm 7412 T463 H6
Total 23844 84894 1050

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing
Glasgow Caledonian University

12

Glasgow Caledonian

Results and Discussion

Table 3: Increase in binary size for instrumented applica-
tions from MiBench embedded benchmark suite.

Application TPP ASS® SCT SB®
basicmath 1.32x 01.41x 19.27x | 6.18x
bitcount 1.19x% O8.7T1x 26.21x T.2x
qsort 1.79x | 157.32x 37.56x | 9.68x
s1san 19.91x 33.32x 8.83x | H.68x
dijkstra 2.09x | 100.62x 26.2x 6.8x
patricia 2.6x 103.1x 26.11x | 7.72x
sha 2.63x | 104.68x 25.5x | T.85x
adpcm 1.83x | 155.54x 32.41x | 9.78x
FFT 3.28x | 101.56x 26.77Tx | 7.15x
TSI 2.056x 20.19x 6.24x | 4.03x
Average 3.87Tx | 96.65x | 21.95x T7.2X

% AddressSanitizer, 'SafeCode, ?SoftBound,

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 13
Glasgow Caledonian University

Glasgow Caledonian

CO”C' USIOn University

» A fast and effective tag-protection solution to detect
Illegal memory accesses.

» Implemented as an instrumentation pass using LLVM
and operates at source-code level.

» Less performance overhead when compared with the

publicly available tools.

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 14
Glasgow Caledonian University

GCU

Glasgow Caledonian
University

Any Questions?

Ahmed Saeed (ahmed.saeed@gcu.ac.uk)
School of Engineering and Computing 15
Glasgow Caledonian University

