A HIGH SPEED SCALAR MULTIPLIER FOR BINARY EDWARDS CURVES.

A. P. Fournaris, N. Sklavos and C. Koulamas

Industrial Systems Institute Research Center ATHENA, Greece Computer Informatics Engineering Dpt, Technological Educational Institute of Western Greece, Greece Computer Engineering and Informatics Dpt, University of Patras, Patra, Greece

OUTLINE

- Elliptic Curve for Cryptography and Edwards Curves
- Motivation
- Proposed Concept
- Proposed Design Approach Parallelism
- Employed Algorithms
- Proposed Architecture
- Results- Comparisons

ELLIPTIC CURVE FOR CRYPTOGRAPHY

- Scalar Multiplication main crypto-operation
- Elliptic Curves described in various forms:
 - Weierstrass form (most popular, standardized NIST)
 - Hessian form
 - Montgomery form
 - Edwards form
 - • • •
- Popular Elliptic Curves (EC) defined over:
 - Prime Fields GF(p):
 Efficient software implementations
 - Binary Extension Fields GF(2^k): Efficient hardware implementations

ELLIPTIC CURVE ARITHMETIC

Point Addition: add two points of the Elliptic Curve to get a third point of the Elliptic Curve $P_3 = (x_3, y_3) = P_1 + P_2$

Point Doubling: add one Elliptic Curve point with itself $P_3 = 2P_1$

Scalar Multiplication : add one Elliptic Point with itself e times $Q = e \cdot P$

Can be analyzed in a series of point additions and point doublings

Point operations rely on $GF(2^k)$ operations:

- GF(2^k) multiplication and inversion: computationally demanding
- Exchange GF(2^k) inversion with several multiplications to reduce computation cost by transforming point coordinates from the affine to the projective space

EDWARDS CURVES VS WEIERSTRASS CURVES

- Weierstrass EC equation do not provide unified symmetric approach for Point addition and Doubling. There are exception points (eg point at Infinity).
 - Problem: Exception points can be exploited for side channel and fault injection analysis attacks !!
- Weierstrass ECs are not complete. The Group law for point addition is different than the one for Point doubling.
- Edwards ECs have a unified, symmetric group law. The same equations can be used for point addition and for point doubling
- •Edwards ECs have no exception points. There are complete.
- •Unified Group Law + No exception Points = Edwards ECs intrinsically resistant against simple side channel attacks
- •A point operation in Edwards Curves needs more GF(2^k) operations than in Weierstrass Curves

DESIGN APPROACHES AND MOTIVATION

- In Edwards curve projective coordinates, 2 GF(2^k) inversions (I) are exchanged with 13 Multiplications (M) for point addition (PA).
- PA Total cost: **18M**+3S+6D+24A (higher cost than PA in Weirstrass ECs)
- GF(2^k) multiplication approaches:
 - Bit Serial multipliers: slow but small number of gates and flexible (can be reused for various curves and GF(2^k))
 - Bit parallel multipliers: Fast but high number of gates and not flexible.
 - Digit Serial multipliers: A compromise between bit serial and bit parallel approach
- Can we design an Edwards curve scalar multiplier with similar performance characteristics as Weierstrass curve designs?

WHY: BECs offer a solid base for strong Side Channel Attack Resistance.

PROPOSED SOLUTION CONCEPT

BLINDED MONTGOMERY POWER LADDER

Algorithm 2. SPA resistant MPL algorithm Input: P : BEC base point $\in EC(GF(2^k))$, $e = (e_{t-1}, e_{t-2}, ...e_0) \in GF(2^k)$ Output: $e \cdot P$ 1. $R_0 = \mathcal{O}, R_1 = P$ 2. For i = t - 1 to 0 If $(e_i = 0)$ then (a) $R_1 = R_0 + R_1, R_0 = 2 \cdot R_0$ else (b) $R_0 = R_0 + R_1, R_1 = 2 \cdot R_1$ end if 3. Return R_0

Algorithm 3. Blinded MPL (bMPL) algorithm **Input:** *P* : BEC base point, random points $R, -R \in EC(GF(2^k)), e = (e_{t-1}, e_{t-2}, \dots e_0) \in GF(2^k)$ **Output:** $e \cdot P$ 1. $R_0 = R, R_1 = R + P, R_R = -R$, 2. For i = t - 1 to 0 2 PD (a) $R_R = 2R_R \leftarrow$ 1 PA If $(e_i = 0)$ then (b) $R_1 = R_0 + R_1, R_0 = 2 \cdot R_0$ In parallel else each round (c) $R_0 = R_0 + R_1$, $R_1 = 2 \cdot R_1$ end if 3. Return $R_0 + R_R$

STEP 1: BREAK PA AND PD INTO SINGLE GF(2^K) **OPERATIONS** $(X_{3D}:Y_{3D}:Z_{3D})$

PA: 19 M +2 S + 22 A

PD: 4 M +6 S + 9 A

Binary Edwards EC equation:

 $d_1(x + y) + d_2(x^2 + y^2) = xy + xy(x + y) + x^2y^2$

		-
$(X_{3D}:Y_{3D}:Z_{3D}) =$	$(X_3:Y_3:Z_3)$	$= (X_1 : Y_1 :$
$2(X_1:Y_1:Z_1)$	$Z_1) + (X_2 : Y_2 :$	(Z_2)
$DA = X_1^2$	$A = X_1 \cdot Y_1$	$V1 = A \cdot B$
$DC = Y_1^2$	$B = Y_1 \cdot Y_2$	L2 = L1 + F
$DE = Z_1^2$	$C = Z_1 \cdot Z_2$	$Z_3 = C \cdot L2$
$DB = DA^2$	$D = d_1 \cdot C$	$V2 = G \cdot H$
$DD = DC^2$	$E = C^2$	$V3 = d_1 \cdot E$
$DF1 = DE^2$	$F = D^2$	V4 = V1 + V2
$DH = DA \cdot DE$	$G1 = X_1 + Z_1$	V5 = V3 + V4
$DI = DC \cdot DE$	$G2 = X_2 + Z_2$	$L3 = L \cdot V5$
$DF = d_1 \cdot DF1$	$H1 = Y_1 + Z_1$	$V6 = D \cdot F$
DG = DB + DD	$H2 = Y_2 + Z_2$	V7 = L3 + V6
DV2 = DH + DD	$G = G1 \cdot G2$	V = V7 + U
DV3 = DI + DB	$H = H1 \cdot H2$	S1 = A + D
DJ = DH + DI	I = A + G	S2 = G + D
DV1 = DF + DG	J = B + H	$S3 = S1 \cdot S2$
$DK1 = d_2 \cdot DJ$	$K1 = X_1 + Y_1$	$S4 = D \cdot S3$
DK = DG + DK1	$K2 = X_2 + Y_2$	$X_3 = V + S4$
$Z_{3D} = DV1 + DJ$	$K = K1 \cdot K2$	T1 = B + D
$X_{3D} = DK + DV2$	$L = d_1 \cdot K$	T2 = H + D
$Y_{3D} = DK + DV3$	U1 = K + I	$T3 = T1 \cdot T2$
- 32	U2 = J + C	$T4 = D \cdot T3$
	U3 = U1 + U2	$Y_3 = V + T4$
$xy(x+y) + x^2y^2$	$L1 = L \cdot U3$	

STEP 2: PARALLELISM SCHEME DDG ANALYSIS

DATA DEPENDENCY GRAPH ANALYSIS (CONSTRAINED FOR 2 GF(2^K) MULTIPLIERS PER LAYER)

PROPOSED PARALLELISM

			Touric	4											
Input $(X_1 : Y_1 : Z_1)$ $(X_2 : Y_2 : Z_2)$					$(2:Z_2)$	$(X_0 :$	$Y_0 : Z_0$)	[
	layer	M1	M2	Sq1	Sq2	Ad1	Ad2	Ad3	[
	1	Α	В	DA	DC	G1	G2	H2	Ι						
	2	C	G	DB	DD	H1	K2	K1							
	3	D	H	DE	DAR	I	DG	*							
	4	DI	DH	DC_R	E	J	52	T2	ŀ						
	6	DK1	V 3 K	DF1	DDR			112							
	7	DID	DHp	DF1p	F	U1	DG1p	DK	ł						
	8	V2	DFR	R	*	DJ_B	DV3R	U3							
	9	L	DKIR	*	*	DV_1^2	$R = DV1_R$	V4	t in the second s						
	10	S3	L1	*	*	DK_{F}	Z_R	V5		Precomputing operations for					
	11	L3	V6	DE'_R	+	X_R	Y_R	L2		next round's R _R PD, reduce remaining rounds layers to					
	12	DF	Z_3	DA'_R	DC'_R	X_{3D}	Y_{3D}	V7					es		
	13	тз	S4	DB'_R	DD'_R	V	DV1	*					avers to 14		
	14	T4	DI'_R	$DF1'_R$	*	X3	Z_{3D}	DG'_R			Ŭ		·		
	15	DH'_{R}	DF'_{R}	*	*	Y_3	$DV3'_{B}$	+						un de	
	Out	$(X_0 : X_0)$	Var Za)	(v	. V !		(1)		r r		emain	ind Div	VIPL 10	unas	
	Out	(13.1	(3:23)	(43D	$: r_{3D} : A$	23D)	(X_R)	$Y_R : Z_R$							
	* : dur	nmy opera	tion	(A3D	: ¹ 3D : 4	$^{2}3D)$		$Y_R : Z_R$) puts	$(X_1 : 1)$	$Y_{1}:Z_{1}$	$(X_2 : Y)$	$(2:Z_2)$	$(X_0 : Y$	$(0:Z_0)$	
	* : dun	nmy opera	tion	(13)	: ¹ 3D : 4	² 3D)	Ing	$Y_R : Z_R$) puts M1	$(X_1:X_1)$	$Y_1: Z_1$	$(X_2:Y)$	$\begin{bmatrix} 2 & Z_2 \end{bmatrix}$	$(X_0: Y)$	$(0:Z_0)$	
	* : dun	nmy opera	tion	(A3D	: ¹ 3D : 4	² 3D)	Ing	$\begin{array}{c} Y_R : Z_R \\ puts \\ M1 \\ \end{array}$	(X ₁ : 1 M2	Y : Z ₁) Sq1	$(X_2 : Y)$ Sq2	$\begin{bmatrix} 2 & Z_2 \end{bmatrix}$	$(X_0:Y$ Ad2	Ad3	
	* : dun	nmy opera	ation	(13D	: Y _{3D} : A	² 3D)	$ (X_R :$ Inplayer	$\begin{array}{c} Y_R:Z_R) \\ puts \\ \hline M1 \\ \hline A \\ \hline C \\ \end{array}$	$\begin{array}{c} (X_1: X_1 \\ M_2 \\ B \\ C \end{array}$	$X : Z_1$ Sq1 DA	$(X_2:Y)$ Sq2 DC	(2 : Z ₂) Ad1 G1	$(X_0: Y$ Ad2 G2	$\begin{array}{c} (0:Z_0) \\ Ad3 \\ H2 \\ K1 \end{array}$	
Fa	* : dur	nmy opera	ads 1			±0	$\begin{bmatrix} (X_R : \\ In] \\ layer \\ 1 \\ 2 \\ 2 \end{bmatrix}$	$\begin{array}{c c} Y_R : Z_R \\ \hline \\ puts \\ \hline \\ A \\ \hline \\ C \\ D \\ \hline \end{array}$	(X ₁ : X M2 B G H	$\begin{array}{c} F : Z_1 \\ Sq1 \\ DA \\ DB \\ DE \end{array}$	$(X_2 : Y)$ Sq2 DC DD	$\begin{array}{c c} & & \\ \hline \\ & & \\ \hline & & \\ \hline \\ \hline$	$(X_0 : Y$ Ad2 $G2$ $K2$ DC	$\begin{array}{c} Ad3 \\ H2 \\ K1 \\ DV1 \\ \end{array}$	
Ea	ch lay	ver ne	eds 1	clock (cycle	to	$\begin{array}{c} & (X_R : \\ \hline & \text{In} \\ \\ & \text{layer} \\ \hline \\ 1 \\ 2 \\ 3 \\ 4 \\ \end{array}$	$\begin{array}{c c} Y_R : Z_R \\ \hline \\ puts \\ \hline \\ A \\ \hline \\ C \\ D \\ D \\ D \\ D \\ \end{array}$	(X ₁ :) M2 B G H DH	$\begin{array}{c} Y_{1} : Z_{1} \\ Sq1 \\ DA \\ DB \\ DE \\ E \end{array}$	(X ₂ : Y Sq2 DC DD *	$\begin{bmatrix} 2 & : & Z_2 \\ A & d1 \\ G1 \\ H1 \\ I \\ I \\ I \end{bmatrix}$	(X ₀ : Y Ad2 G2 K2 DG S2	$\begin{array}{c} \begin{array}{c} Ad3 \\ H2 \\ K1 \\ DV1_R \\ T2 \end{array}$	
Ea	ch lay	ver neo	eds 1	clock o	cycle	to	$ \begin{array}{c} (X_R: \\ In: \\ \hline \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array} $	$\begin{array}{c c} Y_R : Z_R \\ \hline \\ puts \\ \hline \\ M1 \\ \hline \\ A \\ \hline \\ C \\ D \\ DI \\ V1 \\ \hline \end{array}$	$\begin{array}{c} (X_1:)\\ M_2\\ B\\ G\\ H\\ DH\\ V_3 \end{array}$	$\begin{array}{c} Y_{1} : Z_{1} \\ Sq1 \\ DA \\ DB \\ DE \\ E \\ DF1 \end{array}$	(X ₂ : Y Sq2 DC DD * *	$\begin{bmatrix} 2 & : & Z_2 \\ A & d1 \\ \end{bmatrix}$ $\begin{bmatrix} G1 \\ H1 \\ I \\ J \\ DJ \\ \end{bmatrix}$	$(X_0: Y$ Ad2 $G2$ $K2$ DG $S2$ $DV2$	$\begin{array}{c} Ad3 \\ H2 \\ K1 \\ DV1_R \\ T2 \\ DJR \end{array}$	
Ea coi	ch lay ne up	ver neo with	eds 1 a resu	clock (cycle	to	$\begin{array}{c c} & (X_R: \\ & In; \\ \hline \\ & Iayer \\ \hline \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array}$	$\begin{array}{c c} Y_R:Z_R \\ \hline \\ puts \\ \hline \\ M1 \\ \hline \\ A \\ \hline \\ C \\ D \\ DI \\ \hline \\ V1 \\ DK1_P \\ \end{array}$	$\begin{array}{c} (X_1:)\\ M_2\\ B\\ G\\ H\\ DH\\ V_3\\ K \end{array}$	$\begin{array}{c} Y : Z_1 \\ Sq1 \\ DA \\ DB \\ DE \\ E \\ DF1 \\ * \end{array}$	(X ₂ : Y Sq2 DC DD * *	$\begin{array}{c} G \\ \hline 2:Z_2 \\ \hline Ad1 \\ \hline G1 \\ H1 \\ \hline I \\ J \\ DJ \\ S1 \end{array}$	$(X_0: Y$ Ad2 $G2$ $K2$ DG $S2$ $DV2$ $DV2P$	$\begin{array}{c} \begin{array}{c} Ad3 \\ \hline H2 \\ K1 \\ DV1_R \\ T2 \\ DJ_R \\ U2 \end{array}$	
Ea coi	ch lay ne up	ver neo with	eds 1 a resu	clock (cycle	to	$\begin{array}{c c} & (X_R: \\ & In; \\ \hline \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	$\begin{array}{c c} Y_R:Z_R) \\ \hline \\ puts \\ \hline \\ M1 \\ \hline \\ A \\ \hline \\ C \\ D \\ DI \\ \hline \\ DI \\ V1 \\ \hline \\ DK1_R \\ DK1 \\ \end{array}$	$\begin{array}{c} (X_1:)\\ M_2\\ B\\ G\\ H\\ DH\\ V_3\\ K\\ V_2 \end{array}$	$\begin{array}{c} Y : Z_1 \\ Sq1 \\ DA \\ DB \\ DE \\ E \\ DF1 \\ * \\ * \end{array}$	(X ₂ : Y Sq2 DC DD * * *	$\begin{array}{c} G \\ \hline 2 : Z_2 \\ \hline A d1 \\ \hline G1 \\ H1 \\ I \\ J \\ DJ \\ S1 \\ U1 \\ \end{array}$	$\begin{array}{c} (X_0:Y\\ \hline Ad2\\ \hline G2\\ K2\\ \hline DG\\ S2\\ \hline DV2\\ \hline DV2_R\\ \hline DK_R \end{array}$	$\begin{array}{c} \begin{array}{c} \operatorname{Ad3} \\ \\ H2 \\ \\ K1 \\ \\ DV1_R \\ \\ T2 \\ \\ DJ_R \\ \\ U2 \\ \\ T1 \end{array}$	
Ea coi	ch lay ne up	ver neo with	eds 1 a resu	clock (lt.	cycle	to	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} Y_R:Z_R) \\ \hline \\ puts \\ \hline \\ M1 \\ \hline \\ A \\ \hline \\ C \\ D \\ DI \\ \hline \\ DI \\ V1 \\ \hline \\ DK1_R \\ DK1 \\ \hline \\ L \\ \end{array}$	$\begin{array}{c} (X_1:)\\ M_2\\ B\\ G\\ H\\ DH\\ V_3\\ K\\ V_2\\ DF \end{array}$	$\begin{array}{c} Y : Z_1 \\ Sq1 \\ DA \\ DB \\ DE \\ E \\ DF1 \\ * \\ * \\ * \\ \end{array}$	(X ₂ : Y Sq2 DC DD * * * F	$\begin{array}{c} G \\ \hline 2:Z_2 \\ \hline Ad1 \\ \hline G1 \\ H1 \\ I \\ J \\ DJ \\ S1 \\ U1 \\ Z_B \end{array}$	$\begin{array}{c} (X_0:Y\\ \hline Ad2\\ \hline G2\\ K2\\ \hline DG\\ S2\\ \hline DV2\\ \hline DV2_R\\ \hline DK_R\\ \hline V4\\ \end{array}$	$\begin{array}{c} \begin{array}{c} Ad3 \\ H2 \\ K1 \\ DV1_R \\ T2 \\ DJ_R \\ U2 \\ T1 \\ U3 \end{array}$	
Ea coi	ch lay ne up	ver neo	eds 1 a resu	clock o lt.	cycle	to		$\begin{array}{c c} Y_R:Z_R) \\ \hline \\ puts \\ \hline \\ M1 \\ \hline \\ A \\ \hline \\ C \\ D \\ DI \\ \hline \\ DI \\ V1 \\ \hline \\ DK1 \\ \hline \\ DK1 \\ \hline \\ L \\ S3 \\ \end{array}$	$\begin{array}{c} (X_{1}: 1) \\ M_{2} \\ B \\ G \\ H \\ DH \\ V_{3} \\ K \\ V_{2} \\ DF \\ L1 \end{array}$	$\begin{array}{c} Y : Z_1 \\ Sq1 \\ DA \\ DB \\ DE \\ E \\ DF1 \\ * \\ * \\ DE_{P} \end{array}$	(X ₂ : Y Sq2 DC DD * * * F *	$\begin{bmatrix} 2 & : & Z_2 \\ A & d1 \\ \end{bmatrix}$ $\begin{bmatrix} G1 \\ H1 \\ J \\ DJ \\ S1 \\ U1 \\ Z_R \\ X_R \end{bmatrix}$	$\begin{array}{c} (X_0:Y\\ Ad2\\ \hline \\ G2\\ K2\\ DG\\ S2\\ DV2\\ DV2_R\\ DK_R\\ V4\\ Y_R\\ \end{array}$	$\begin{array}{c} & (20) \\ \hline Ad3 \\ \hline H2 \\ K1 \\ \hline DV1_R \\ T2 \\ \hline DJ_R \\ U2 \\ T1 \\ U3 \\ V5 \\ \end{array}$	
Ea coi	ch lay ne up	ver ne	eds 1 a resu	clock (lt.	cycle	to	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} Y_R:Z_R)\\ \hline \\ puts \\ \hline \\ M1 \\ \hline \\ A \\ \hline \\ C \\ D \\ DI \\ \hline \\ DI \\ V1 \\ \hline \\ DK1_R \\ DK1 \\ \hline \\ S3 \\ V6 \\ \end{array}$	$\begin{array}{c} (X_{1}:)\\ M2\\ B\\ G\\ H\\ DH\\ V3\\ K\\ V2\\ DF\\ L1\\ L3\\ \end{array}$	$\begin{array}{c} Y : Z_1 \\ Sq1 \\ DA \\ DB \\ DE \\ E \\ DF1 \\ * \\ * \\ DE_R \\ DA_P \end{array}$	$\begin{array}{c} (X_2:Y)\\ Sq2\\ DC\\ DD\\ *\\ *\\ *\\ *\\ F\\ *\\ DC_p\\ DC_p \end{array}$	$\begin{array}{c} \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{H} \\ \mathbf{I} \\ \mathbf{J} \\ \mathbf{D} \\ \mathbf{J} \\ \mathbf{D} \\ \mathbf{S} \\ \mathbf{U} \\ \mathbf{U} \\ \mathbf{Z} \\ \mathbf{R} \\ \mathbf{X} \\ \mathbf{R} \\ \mathbf{D} \\ \mathbf{K} \end{array}$	$\begin{array}{c} (X_0:Y\\ \hline Ad2\\ \hline G2\\ K2\\ \hline DG\\ S2\\ \hline DV2\\ \hline DV2_R\\ \hline DV2_R\\ \hline V4\\ \hline Y_R\\ \hline DV3\\ \end{array}$	$\begin{array}{c} \begin{array}{c} Ad3 \\ H2 \\ K1 \\ DV1_R \\ T2 \\ DJ_R \\ U2 \\ T1 \\ U3 \\ V5 \\ L3 \end{array}$	
Ea coi clo	ch lay ne up ck cyc	ver neo with	eds 1 a resu	clock o lt. iod die	cycle ctatec	to	$\begin{array}{c c} & (X_R: \\ \hline & In; \\ \hline \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \end{array}$	$\begin{array}{c c} Y_R:Z_R)\\ \hline \\ puts \\ \hline \\ M1 \\ \hline \\ A \\ \hline \\ C \\ DI \\ DI \\ \hline \\ DI \\ V1 \\ DK1 \\ \hline \\ DK1 \\ \hline \\ L \\ S3 \\ V6 \\ \hline \\ T3 \\ \end{array}$	$\begin{array}{c c} (X_1: 1) \\ M2 \\ B \\ G \\ H \\ DH \\ V3 \\ K \\ V2 \\ DF \\ L1 \\ L3 \\ Z_3 \end{array}$	$\begin{array}{c} Y : Z_1 \\ Sq1 \\ DA \\ DB \\ DE \\ E \\ DF1 \\ * \\ * \\ DE \\ B \\ DB \\ B \end{array}$	$\begin{array}{c} (X_2:Y)\\ Sq2\\ DC\\ DD\\ *\\ *\\ *\\ *\\ F\\ *\\ DC_R\\ DD_R \end{array}$	$\begin{bmatrix} 2 & : & Z_2 \\ A & d1 \\ \end{bmatrix}$ $\begin{bmatrix} G1 \\ H1 \\ J \\ DJ \\ S1 \\ U1 \\ Z_R \\ X_R \\ DK \\ DV1 \end{bmatrix}$	$\begin{array}{c} (X_0:Y\\ Ad2\\ \hline \\ G2\\ K2\\ DG\\ S2\\ DV2\\ DV2_R\\ DV2_R\\ V4\\ V4\\ Y_R\\ DV3\\ Y_{3D}\\ \end{array}$	$\begin{array}{c} & (20) \\ \hline Ad3 \\ \hline H2 \\ K1 \\ \hline DV1_R \\ T2 \\ \hline DJ_R \\ U2 \\ T1 \\ U3 \\ V5 \\ L3 \\ V7 \\ \end{array}$	
Ea coi clo by	ch lay ne up ck cyc	ver neo with	eds 1 a resu ne peri multip	clock o lt. iod die	cycle ctatec	to	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} Y_R:Z_R) \\ \hline \\ puts \\ \hline \\ M1 \\ \hline \\ A \\ \hline \\ C \\ D \\ DI \\ V1 \\ DK1_R \\ DK1 \\ \hline \\ DK1_R \\ DK1 \\ \hline \\ S3 \\ V6 \\ \hline \\ T3 \\ T4 \\ \end{array}$	$\begin{array}{c} (X_1:)\\ M_2\\ B\\ G\\ H\\ DH\\ V_3\\ K\\ V_2\\ DF\\ L1\\ L3\\ Z_3\\ S4\\ \end{array}$	$\begin{array}{c} F : Z_1 \\ Sq1 \\ DA \\ DB \\ DE \\ E \\ DF1 \\ * \\ * \\ DE_{R} \\ DB_{R} \\ DB_{R} \\ DF1_{R} \end{array}$	$\begin{array}{c} (X_2:Y\\ Sq2\\ DC\\ DD\\ *\\ *\\ *\\ *\\ F\\ *\\ DC_R\\ DD_B\\ *\\ \end{array}$	$\begin{array}{c} & \mathbf{G} \\ \hline \mathbf{g}_2: \mathbf{Z}_2) \\ \hline \mathbf{A} \mathbf{d} 1 \\ \hline \mathbf{G} 1 \\ \hline \mathbf{H} 1 \\ \mathbf{I} \\ \mathbf{J} \\ \mathbf{D} \mathbf{J} \\ \mathbf{S} 1 \\ \mathbf{U} 1 \\ \mathbf{Z}_R \\ \mathbf{X}_R \\ \hline \mathbf{D} \mathbf{K} \\ \mathbf{D} \mathbf{V} 1 \\ \mathbf{X}_{3D} \end{array}$	$\begin{array}{c} (X_0:Y\\ \hline Ad2\\ \hline G2\\ K2\\ \hline DG\\ S2\\ \hline DV2\\ \hline DV2_R\\ \hline DV2_R\\ \hline DV2_R\\ V4\\ \hline Y_R\\ \hline V4\\ \hline Y_R\\ \hline DV3\\ \hline Y_{3D}\\ \hline Z_{3D}\\ \hline \end{array}$	$\begin{array}{c} \begin{array}{c} {\rm Ad3} \\ {\rm H2} \\ {\rm K1} \\ {\rm DV1}_R \\ {\rm T2} \\ {\rm DJ}_R \\ {\rm U2} \\ {\rm T1} \\ {\rm U3} \\ {\rm V5} \\ {\rm L3} \\ {\rm V7} \\ {\rm V} \end{array}$	
Ea coi clo by	ch lay ne up ck cyc the C	ver neo with	eds 1 a resu ne peri multip	clock o lt. iod die lier	cycle ctatec	to	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} Y_R:Z_R)\\ \hline \\ puts \\ \hline \\ M1 \\ \hline \\ A \\ \hline \\ C \\ D \\ DI \\ \hline \\ DI \\ DK1 \\ DK1 \\ \hline \\ DK1 \\ L \\ S3 \\ V6 \\ \hline \\ T3 \\ T4 \\ DF_R \\ \hline \end{array}$	$\begin{array}{c} (X_{1}:)\\ M_{2}\\ B\\ G\\ H\\ DH\\ V_{3}\\ K\\ V_{2}\\ DF\\ L1\\ L3\\ Z_{3}\\ S4\\ DI_{B}\\ \end{array}$	$\begin{array}{c} Y : Z_1 \\ Sq1 \\ DA \\ DB \\ DE \\ E \\ DF1 \\ * \\ * \\ & * \\ & \\ & \\ & \\ & \\ & \\ & \\$	$(X_2 : Y \\ Sq2 \\ DC \\ DD \\ * \\ * \\ * \\ * \\ * \\ DC_R \\ DD_P \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ $	$\begin{array}{c} & & & \\ \hline \\ & & & \\ \hline \\ \hline$	$\begin{array}{c} (X_0:Y\\ Ad2\\ G2\\ K2\\ DG\\ S2\\ DV2\\ DV2_R\\ DV2\\ V4\\ Y_R\\ DV3\\ Y_{3D}\\ Z_{3D}\\ Y_3\\ Y_3\\ \end{array}$	$\begin{array}{c} \begin{array}{c} Ad3 \\ H2 \\ K1 \\ DV1_R \\ T2 \\ DJ_R \\ U2 \\ T1 \\ U3 \\ V5 \\ L3 \\ V7 \\ V \\ DG_R \end{array}$	

1st hMDL round

* : dummy operation

 Z_2

Out

 $(X_R:Y_R:Z$

 $(X_{3D}:Y_{3D}:Z_{3D})$

PROPOSED BEC SCALAR MULTIPLIER ARCHITECTURE

Multiplier unit: bit parallel Karatsuba-Ofman based on

H. Fan, J. Sun, M. Gu, and K.-Y. Lam, "Overlap-free Karatsuba–Ofman polynomial multiplication algorithms," *IET Information Security*, vol. 4, no. 1, p. 8, 2010.

BEC SCALAR MULTIPLIER IMPLEMENTATION RESULTS-COMPARISONS

arch.	techn.	k	Area	max Freq.	time delay	effic.	SCA resist.]
prop.	XC5VLX110	233	32874	132	0.025	0.81	Point Rand	BEC
prop.	XC4VFX140	233	40793	67	0.049	1.97	Point Rand	BEC
[11]	XC4V140	233	35003	47	0.19	6.65	intrinsic SPA	BEC
[29]	XC5VLX110	233	18097	156	0.012	0.2	No	WS
[3]	XC5VLX110	163	17305	262	0.013	0.22	intrinsic SPA	BEC
[3]	XC5VLX110	233	~25000	~200	~0.025	0.6	Intrinsic SPA	

Prop. in Xilinx Virtex 4 better than BEC [11] (faster + better SCA resistance)

Prop. In Xilinx Virtex 5 same speed as normalized BEC [2] but worst Area (note that very rough estimations are made) but offers better SCA resistance.

Prop. In Xilinx Virtex 5 speed close to Weierstrass ECs of [29]. Still more optimizations are needed but [29] results achieved with no SPA/SCA resistance.

CONCLUSIONS — FUTURE WORK

Come close to Weierstrass ECs scalar multiplier performance through parallelism and increasing the number of parallel components (2 $GF(2^k)$ multipliers instead of 1).

Future Work:

- Explore more compact multipliers to save chip covered areas like hybrid or digit serial multipliers
- Explore Different, less costly randomization approaches exploiting BEC intrinsic resistance (randomized projective coordinates??)

QUESTIONS?

Funded by GSRT Action KRIPIS: "ISRTDI: Industrial Systems for Sustainable Development and Wellbeing - Research, Technological Development and Innovation"

cofunded by EU COST action IC1204 Trustworthy Manufacturing & Utilization of Secure Devices End of Presentation Thank You!