A HIGH SPEED SCALAR MULTIPLIER FOR BINARY EDWARDS CURVES.

A. P. Fournaris, N. Sklavos and C. Koulamas

Industrial Systems Institute Research Center ATHENA, Greece

Computer Informatics Engineering Dpt, Technological Educational Institute of Western Greece, Greece

Computer Engineering and Informatics Dpt, University of Patras, Patra, Greece

OUTLINE

- Elliptic Curve for Cryptography and Edwards Curves
-Motivation
- Proposed Concept
- Proposed Design Approach - Parallelism
- Employed Algorithms
- Proposed Architecture
- Results- Comparisons

ELLIPTIC CURVE FOR CRYPTOGRAPHY

- Scalar Multiplication main crypto-operation
- Elliptic Curves described in various forms:
- Weierstrass form (most popular, standardized NIST)
- Hessian form
- Montgomery form
- Edwards form
- Popular Elliptic Curves (EC) defined over:
- Prime Fields GF(p):

Efficient software implementations

- Binary Extension Fields GF $\left(2^{\mathrm{k}}\right)$: Efficient hardware implementations

ELLIPTIC CURVE ARITHMETIC

Point Addition: add two points of the Elliptic Curve to get a third point of the Elliptic Curve $P_{3}=\left(x_{3}, y_{3}\right)=P_{1}+P_{2}$
Point Doubling: add one Elliptic Curve point with itself $P_{3}=2 P_{1}$
Scalar Multiplication : add one Elliptic Point with itself e times $Q=e \cdot P$
" Can be analyzed in a series of point additions and point doublings
Point operations rely on $\operatorname{GF}\left(2^{k}\right)$ operations:

- $G F\left(2^{k}\right)$ multiplication and inversion: computationally demanding
- Exchange $G F\left(2^{k}\right)$ inversion with several multiplications to reduce computation cost by transforming point coordinates from the affine to the projective space

EDWARDS CURVES VS WEIERSTRASS CURVES

- Weierstrass EC equation do not provide unified symmetric approach for Point addition and Doubling. There are exception points (eg point at Infinity).
- Problem: Exception points can be exploited for side channel and fault injection analysis attacks!!
- Weierstrass ECs are not complete. The Group law for point addition is different than the one for Point doubling.
- Edwards ECs have a unified, symmetric group law. The same equations can be used for point addition and for point doubling
- Edwards ECs have no exception points. There are complete.
- Unified Group Law + No exception Points = Edwards ECs intrinsically resistant against simple side channel attacks
-A point operation in Edwards Curves needs more GF(2k) operations than in Weierstrass Curves

DESIGN APPROACHES AND MOTIVATION

In Edwards curve projective coordinates, $2 \mathrm{GF}\left(2^{\mathrm{k}}\right)$ inversions (I) are exchanged with 13 Multiplications (M) for point addition (PA).

PA Total cost: 18M $+3 S+6 \mathrm{D}+24 \mathrm{~A}$ (higher cost than PA in Weirstrass ECs)
GF(2^{k}) multiplication approaches:

- Bit Serial multipliers: slow but small number of gates and flexible (can be reused for various curves and $\operatorname{GF}\left(2^{k}\right)$)
- Bit parallel multipliers: Fast but high number of gates and not flexible.
- Digit Serial multipliers: A compromise between bit serial and bit parallel approach

Can we design an Edwards curve scalar multiplier with similar performance characteristics as Weierstrass curve designs?

PROPOSED SOLUTION CONCEPT

BLINDED MONTGOMERY POWER LADDER

Algorithm 2. SPA resistant MPL algorithm Input: $P:$ BEC base point $\in E C\left(G F\left(2^{k}\right)\right)$, $e=\left(e_{t-1}, e_{t-2}, \ldots e_{0}\right) \in G F\left(2^{k}\right)$
Output: $e \cdot P$

1. $R_{0}=\mathcal{O}, R_{1}=P$
2. For $i=t-1$ to 0

If $\left(e_{i}=0\right)$ then
(a) $R_{1}=R_{0}+R_{1}, R_{0}=2 \cdot R_{0}$ else
(b) $R_{0}=R_{0}+R_{1}, R_{1}=2 \cdot R_{1}$ end if
3. Return R_{0}

Algorithm 3. Blinded MPL (bMPL) algorithm
Input: P : BEC base point, random points
$R,-R \in E C\left(G F\left(2^{k}\right)\right), e=\left(e_{t-1}, e_{t-2}, \ldots e_{0}\right) \in G F\left(2^{k}\right)$
Output: $e \cdot P$

1. $R_{0}=R, R_{1}=R+P, R_{R}=-R$,
2. For $i=t-1$ to 0
(a) $R_{R}=2 R_{R}$

If $\left(e_{i}=0\right)$ then
2 PD
(b) $R_{1}=R_{0}+R_{1}, R_{0}=2 \cdot R_{0} \longleftarrow$ In parallel
else each round
(c) $R_{0}=R_{0}+R_{1}, R_{1}=2 \cdot R_{1}$
end if
3. Return $R_{0}+R_{R}$

STEP 1: BREAK PA AND PD INTO SINGLE GF(2 $\left.{ }^{\text {K }}\right)$

 OPERATIONSPA: $19 \mathrm{M}+2 \mathrm{~S}+22 \mathrm{~A}$

PD: $4 \mathrm{M}+6 \mathrm{~S}+9 \mathrm{~A}$

Binary Edwards EC equation:

$$
d_{1}(x+y)+d_{2}\left(x^{2}+y^{2}\right)=x y+x y(x+y)+x^{2} y^{2}
$$

$\left(X_{3 D}: Y_{3 D}: Z_{3 D}\right)=$
$2\left(X_{1}: Y_{1}: Z_{1}\right)$
$D A=X_{1}^{2}$
$D C=Y_{1}^{2}$
$D E=Z_{1}^{2}$
$D B=D A^{2}$
$D D=D C^{2}$
$D F 1=D E^{2}$
$D H=D A \cdot D E$
$D I=D C \cdot D E$
$D F=d_{1} \cdot D F 1$
$D G=D B+D D$
$D V 2=D H+D D$
$D V 3=D I+D B$
$D J=D H+D I$
$D V 1=D F+D G$
$D K 1=d_{2} \cdot D J$
$D K=D G+D K 1$
$Z_{3 D}=D V 1+D J$
$X_{3 D}=D K+D V 2$
$Y_{3 D}=D K+D V 3$

$\left(X_{3}: Y_{3}: Z_{3}\right)=\left(X_{1}: Y_{1}:\right.$	
$\left.Z_{1}\right)+\left(X_{2}: Y_{2}: Z_{2}\right)$	
$A=X_{1} \cdot Y_{1}$	$V 1=A \cdot B$
$B=Y_{1} \cdot Y_{2}$	$L 2=L 1+F$
$C=Z_{1} \cdot Z_{2}$	$Z_{3}=C \cdot L 2$
$D=d_{1} \cdot C$	$V 2=G \cdot H$
$E=C^{2}$	$V 3=d_{1} \cdot E$
$F=D^{2}$	$V 4=V 1+V 2$
$G 1=X_{1}+Z_{1}$	$V 5=V 3+V 4$
$G 2=X_{2}+Z_{2}$	$L 3=L \cdot V 5$
$H 1=Y_{1}+Z_{1}$	$V 6=D \cdot F$
$H 2=Y_{2}+Z_{2}$	$V 7=L 3+V 6$
$G=G 1 \cdot G 2$	$V=V 7+U$
$H=H 1 \cdot H 2$	$S 1=A+D$
$I=A+G$	$S 2=G+D$
$J=B+H$	$S 3=S 1 \cdot S 2$
$K 1=X_{1}+Y_{1}$	$S 4=D \cdot S 3$
$K 2=X_{2}+Y_{2}$	$X_{3}=V+S 4$
$K=K 1 \cdot K 2$	$T 1=B+D$
$L=d_{1} \cdot K$	$T 2=H+D$
$U 1=K+I$	$T 3=T 1 \cdot T 2$
$U 2=J+C$	$T 4=D \cdot T 3$
$U 3=U 1+U 2$	$Y_{3}=V+T 4$
$L 1=L \cdot U 3$	

STEP 2: PARALLELISM SCHEME DDG ANALYSIS

One parallelism layer (all operations performed in parallel)

DATA DEPENDENCY GRAPH ANALYSIS (CONSTRAINED FOR 2 GF(2́) MULTIPLIERS PER LAYER)

One bMPL round:

2PD and 1 PA:
Needed GF(2^{k}) operations per round:
$27 \mathrm{M}+14 \mathrm{~S}+40 \mathrm{~A}$
Parallelism layer dictated by M (2 per layer) \rightarrow
$\left\lceil\frac{27}{2}\right\rceil$ layers +1 final layer
i.e. 15 layers

Assuming 3 adders and 2 squarers per layers:
Available 45 A and 30 S operations per round.

Needed 40 A and 14 S.
The unused operations employed for precomputing next round's PD

PROPOSED PARALLELISM

PROPOSED BEC SCALAR MULTIPLIER ARCHITECTURE

Total Delay: $A=(14 k+15)\left(T_{A}+\left(2\left[\log _{2} k\right]\right) T_{X}\right.$

Multiplier unit: bit parallel Karatsuba-Ofman based on
H. Fan, J. Sun, M. Gu, and K.-Y. Lam, "Overlap-free Karatsuba-Ofman polynomial multiplication algorithms," IET Information Security, vol. 4, no. 1, p. 8, 2010.

BEC SCALAR MULTIPLIER IMPLEMENTATION RESULTS-COMPARISONS

arch.	techn.	k	Area	max Freq.	time delay	effic.	SCA resist.	
prop.	XC5VLX110	233	32874	132	0.025	0.81	Point Rand	BEC
prop.	XC4VFX140	233	40793	67	0.049	1.97	Point Rand	BEC
[11]	XC4V140	233	35003	47	0.19	6.65	intrinsic SPA	BEC
[29]	XC5VLX110	233	18097	156	0.012	0.2	No	WS
[3]	XC5VLX110	163	17305	262	0.013	0.22	intrinsic SPA	BEC
[3]	XC5 V/X110	233	-25000	-200	-0.025	0.6	Intrinsic SPA	

Prop. in Xilinx Virtex 4 better than BEC [11] (faster + better SCA resistance)
Prop. In Xilinx Virtex 5 same speed as normalized BEC [2] but worst Area (note that very rough estimations are made) but offers better SCA resistance.

Prop. In Xilinx Virtex 5 speed close to Weierstrass ECs of [29]. Still more optimizations are needed but [29] results achieved with no SPA/SCA resistance.

CONCLUSIONS - FUTURE WORK

Come close to Weierstrass ECs scalar multiplier performance through parallelism and increasing the number of parallel components (2 $G F\left(2^{k}\right)$ multipliers instead of 1).

Future Work:

- Explore more compact multipliers to save chip covered areas like hybrid or digit serial multipliers
- Explore Different, less costly randomization approaches exploiting BEC intrinsic resistance (randomized projective coordinates??)

QUESTIONS?

Funded by GSRT Action KRIPIS: "ISRTDI: Industrial Systems for Sustainable Development and Wellbeing - Research, Technological Development and Innovation"

cofunded by EU COST action IC1204
Trustworthy Manufacturing \& Utilization of
Secure Devices

End of Presentation

Thank You!

