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 Scalar Multiplication main crypto-operation 

 Elliptic Curves described in various forms:

 Weierstrass form (most popular, standardized NIST) 

 Hessian form

 Montgomery form

 Edwards form

 ….

 Popular Elliptic Curves (EC) defined over:
 Prime Fields GF(p): 

Efficient software implementations

 Binary Extension Fields GF(2k): 

Efficient hardware implementations

ELLIPTIC CURVE FOR CRYPTOGRAPHY



ELLIPTIC CURVE ARITHMETIC

Point Addition: add two points of the Elliptic Curve to get a third 
point of the Elliptic Curve P
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Point Doubling: add one Elliptic Curve point with itself P
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Scalar Multiplication : add one Elliptic Point with itself e times 
𝑄 = 𝑒 ∙ 𝑃
 Can be analyzed in a series of point additions and point doublings

Point operations rely on GF(2k) operations:
 GF(2k) multiplication and inversion: computationally demanding

 Exchange GF(2k) inversion with several multiplications to reduce computation 
cost by transforming point coordinates from the affine to the projective 
space



EDWARDS CURVES VS WEIERSTRASS
CURVES

• Weierstrass EC equation do not provide unified symmetric approach for Point 
addition and Doubling. There are exception points (eg point at Infinity). 

• Problem:  Exception points can be exploited for side channel and fault injection 
analysis attacks !!

• Weierstrass ECs are not complete. The Group law for point addition is different 
than the one for Point doubling.

• Edwards ECs have a unified, symmetric group law. The same equations can be 
used for point addition and for point doubling

•Edwards ECs have no exception points. There are complete.

•Unified Group Law + No exception Points = Edwards ECs intrinsically resistant 
against simple side channel attacks

•A point operation in Edwards Curves needs more GF(2k) operations than in 
Weierstrass Curves



DESIGN APPROACHES AND MOTIVATION

In Edwards curve projective coordinates, 2 GF(2k) inversions (I) are 
exchanged with 13 Multiplications (M) for point addition (PA). 

PA Total cost: 18M+3S+6D+24A (higher cost than PA in Weirstrass ECs)

GF(2k) multiplication approaches:

 Bit Serial multipliers: slow but small number of gates and flexible (can be reused for 
various curves and GF(2k)) 

 Bit parallel multipliers: Fast but high number of gates and not flexible.

 Digit Serial multipliers: A compromise between bit serial and bit parallel approach  

Can we design an Edwards curve scalar multiplier with similar 
performance characteristics as Weierstrass curve designs?

WHY: BECs offer a solid base for strong Side Channel Attack  Resistance.



PROPOSED SOLUTION CONCEPT

Fast BEC 
Scalar 

Multiplier

2 Bit Parallel 
GF(2k) 

Multiplications in 
Parallel

Balanced Partial 
GF(2k) operation 

parallelism

SCA resistant Scalar 
Multiplication 

Algorithm

Base Point 
Blinding

Data Dependency 

Graph Analysis:

Parallelism and 

rescheduling of 

GF(2k) operations

In contrast to existing 

approaches:

Use of 2 multipliers instead of 

1 to increase speed

Blinded Montgomery Power Ladder:

• No dummy operations

• Intrinsic Parallelism

• Randomization



BLINDED MONTGOMERY POWER LADDER

2 PD

1 PA

In parallel

each round



STEP 1: BREAK PA AND PD INTO SINGLE GF(2K) 
OPERATIONS

Binary Edwards 

EC equation:

d1(x + y) + d2(x
2 + y2) = xy + xy(x + y) + x2y2

PA: 19 M +2 S + 22 A

PD: 4 M +6 S + 9 A



STEP 2: PARALLELISM SCHEME DDG 
ANALYSIS
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Minimum to retain 
high use throughout 
all parallelism 
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DDG outcome: 3 
adders

Minimum to retain 
high use throughout 
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layers

DDG outcome: 2 
squarers

One parallelism layer (all operations performed in parallel)



DATA DEPENDENCY GRAPH ANALYSIS
(CONSTRAINED FOR 2 GF(2K) MULTIPLIERS PER LAYER)

One bMPL round:

2PD and 1 PA:

Needed GF(2k) operations per round:

27 M + 14 S + 40 A

Parallelism layer dictated by M (2 per 
layer) 

27

2
layers +1 final layer 

i.e. 15 layers 

Assuming 3 adders and 2 squarers
per layers: 
Available 45 A and 30 S operations 
per round.

Needed 40 A and 14 S.

The unused operations employed for 
precomputing next round’s PD
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PROPOSED PARALLELISM

Each layer needs 1 clock cycle to 
come up with a result.

clock cycle time period dictated 
by the GF(2k) multiplier

1st bMPL round

Remaining bMPL rounds

Precomputing operations for 

next round’s RR PD, reduces 

remaining rounds layers to 14



PROPOSED BEC SCALAR MULTIPLIER ARCHITECTURE

H. Fan, J. Sun, M. Gu, and K.-Y. Lam, “Overlap-free Karatsuba–Ofman polynomial 

multiplication algorithms,” IET Information Security, vol. 4, no. 1, p. 8, 2010.

Multiplier unit: bit parallel Karatsuba-Ofman based on 

Total Delay:  𝐴 = (14𝑘 + 15)(𝑇𝐴 + 2 log2 𝑘 𝑇𝑋



BEC SCALAR MULTIPLIER IMPLEMENTATION
RESULTS-COMPARISONS

Prop. in Xilinx Virtex 4 better than BEC [11] (faster + better SCA resistance)

Prop. In Xilinx Virtex 5 same speed as normalized BEC [2] but worst Area (note 
that very rough estimations are made) but offers better SCA resistance.

Prop. In Xilinx Virtex 5 speed close to Weierstrass ECs of [29]. Still more 
optimizations are needed but [29] results achieved with no SPA/SCA resistance.

BEC

BEC

BEC

BEC

WS

Intrinsic SPA[3] XC5VLX110 ~25000 ~200 ~0.025 0.6233



CONCLUSIONS – FUTURE WORK

Come close to Weierstrass ECs  scalar multiplier performance through 
parallelism and increasing the number of parallel components (2 
GF(2k) multipliers instead of 1).

Future Work:

• Explore more compact multipliers to save chip covered areas like 
hybrid or digit serial multipliers

• Explore Different, less costly randomization approaches exploiting 
BEC intrinsic resistance (randomized projective coordinates??)
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